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Thermal physics of ideal & real

GASES

Introduction. It was upon a gaseous anvil that thermodynamics and statistical
mechanics were forged—this for the simple reason that gases are, in almost
all relevant respects, much easier to describe than liquids or solids. Gases
are (almost literally) to thermodynamics as free particles are to dynamics. In
liquids and solids the physics of interparticle interaction is predominant, while
in gases it can be treated as a perturbation . . . and we will be concerned here
with (among other things) reviewing how that is accomplished.

Gases—classical and quantum, bosonic and fermionic—have already been
called upon many times to illustrate points of principle and technique as they
emerged from the preceding discussion. There exists, however, a parallel body
of principle and technique that is special to gases. That material presents much
that is of intrinsic interest, and acquires practical importance when one seeks
to relate theory to the observed properties of real gases.

The physics of gases is one of those subjects that “goes on forever,” and it
should be recognized that the thermal physics of gases (which itself “goes on
forever”) falls as a sub-head within that larger discipline. My objective will be
to review some of the major topics that fall under that sub-head: excluded will
be everything having to do with non-thermalized gases, everything having to
do with the macroscopic dynamics of gases (formation of shock waves, etc.).

1. Thermodynamics of ideal gases. To get this discussion under way I propose
to look again to the elementary thermodynamics of ideal gases, but from a
somewhat novel point of view. We start from the assumption that we are
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concerned with a simply bulk system

U(S, V, N) = λU
(S
λ

, V
λ

, N
λ

)

It proves useful to notice that we can, if we wish (set λ = N) write

= Nu(s, v)

where
u ≡ U/N ≡ specific internal energy

s ≡ S/N ≡ specific entropy

v ≡ V/N ≡ specific volume

and where the “specific meaning” of u/s/v hinges on the meaning specifically
assigned to the variable N , which refers to the sample size: N might refer to
the mass of the sample, or to the mole number, but will be taken to have the
meaning

N ≡ number of molecules

We accept as given the following statements of idealized fact:

law of boyle/mariotte : If T is held constant then (for
every given/fixed gas sample) pV is constant.

law of charles/gay-lussac : If V is held constant then
(for every given/fixed gas sample) p/T is constant.

These laws assert (respectively) the existence of presently unknown functions
f(T, N) and g(V, N) such that

pV = f(T, N)
p/T = g (V, N)

}
(305)

Immediately p = f(T, N)
V

= Tg(V, N) from which we conclude that

f(T, N)
T

= V g(V, N) = some mutual function K(N) of N alone

and that equations (305)
pV = T · K(N)

This equation will (as required) be invariant under scale-up (V, N) "→ (λV, λN)
if and only if K(λN) = λK(N); i.e., if and only if K(N) is homogeneous of
degree one: K(N) = kN . So we have

pV = NkT (306)



Novel approach to the theory of ideal gases 243

We have, at this point, no reason to suppose that the constant k is not
(like so many other phenomenological constants) specific to each gas species, so
the discovery that

k is a species-independent universal constant

was an unexpected surprise, a mystery that remained opaque until clarified first
by kinetic theory, then (and more generally) by statistical mechanics.185

Equation (306)—which can also be written

pv = kT (307)

—places a fairly rigorous constraint on the functional structure of u(s, v), for
by

T =
(

∂U
∂S

)

V
=

(
∂u
∂s

)

v
and − p =

(
∂U
∂V

)

S
=

(
∂u
∂v

)

s

we have
k∂u

∂s
+ v∂u

∂v
= 0 (308)

This is a linear partial differential equation that yields to analysis by separation
of variables: writing u(s, v) = F (s) · G(v) we have

k d
ds

log F (s) + v d
dv

log G(v) = 0

giving
k d

ds
log F (s) = +a

v d
dv

log G(v) = −a





: a is some mutual constant

Immediately F (s) = F (s0) exp
{

a
s − s0

k

}
and G(v) = G(v0)

(
v0

v

)a
so186

u(s, v) = u0

(
v0

v

)a
exp

{
a

s − s0

k

}
(309)

This is (for each a) a particular solution of (308). More generally—by the
linearity of (308)—we have

u(s, v) =
∫

A(a)
(

v0

v

)a
exp

{
a

s − s0

k

}
da (310)

where A(a) can be specified arbitrarily . To make the same point another way:

185 In the latter connection it became clear that Boltzmann’s constant k—the
“gas constant per molecule”—is (like the c in relativistic physics) by nature
a conversion factor , a factor that describes the relation between two different
ways of measuring the same thing .
186 Compare (30) on page 43.
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it follows from (310) that

T (s, v) = k–1

∫
aA(a)

(
v0

v

)a
exp

{
a

s − s0

k

}
da (311.1)

p(s, v) = v–1
∫

aA(a)
(

v0

v

)a
exp

{
a

s − s0

k

}
da (311.2)

so obviously we are in compliance with (307) whatever the structure we assign
to A(a). But—one of the lessons of this tale—there is more to thermodynamics
than equations of state, and, as I will now argue, the structure of A(a) is in
fact severely constrained.

The principles of thermodynamics supply a general identity
(

∂u
∂v

)

T
= T

( ∂p
∂T

)

v
− p

of which we have several times made use, and which at (86) we called the
“thermodynamic equation of state.” From p(T, v) = kT/v it follows in the
case at hand that

(
∂u
∂v

)

T
= 0 :

{ u , when expressed as a function of
the non-standard variables T and v,
must in fact be v -independent

(312)

but to draw any direct conclusions we would have to construct u(s(T, v), v) and
that is not feasible, for (311.1) is too complicated to permit the functional
inversion T (s, v) "→ s(T, v) to be carried out in explicit detail. We have,
therefore, to proceed by indirection: we observe that the isovolumetric specific
heat

cV ≡ CV /N =
(

∂u
∂T

)

v
must be v-independent

and then use Tobolsky’s method to describe cV as a function of s and v. As it
happens, that labor lies already behind us, for at (85.1) we achieved a result
that can be written

cV = T
/(

∂T
∂s

)

v
and in the present context becomes

cV =
k−1

∫
a1A(a)

(
v0

v

)a
exp

{
a

s − s0

k

}
da

k−2

∫
a2A(a)

(
v0

v

)a
exp

{
a

s − s0

k

}
da

We readily convince ourselves that the v -dependence will disappear from the
right side of the preceding equation if and only if A(a) possesses the specialized
structure

A(a) = u0δ(a − â) (313)

where u0 and â are constants. The upshot of the preceding argument is that,
while all of the u -functions (310) comply with the equation of state (307), only
those of the restricted design (309) conform to the joint requirements of the 1st

and 2nd laws of thermodynamics . . . and that (see again page 43) “ideal gas”
refers to what is actually a one-parameter family of systems.
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historical note : Equation (312) draws attention to a property
of ideal gases that is implicit in the laws of thermodynamics, but
that was recognized before those laws had been formulated . . . for by
about  James Prescott Joule (–) had been led by a
series of difficult experiments to the conclusion (see again Figure 4)
that

the adiabatic free expansion of a dilute gas is isothermal

Joule had put his finger on a physical fact for which the kinetic
theory of gases soon provided a ready explanation: when “ideal
gas molecules” spill into an expanded volume they are required to
“stretch no intermolecular springs;” energy conservation therefore
means conservation of net kinetic energy, which is experienced as
a constancy of the temperature (i.e., of the mean kinetic energy of
the individual molecules).

It now follows that

cV =
k−1â1u0

(
v0

v

)â
exp

{
â

s − s0

k

}

k−2â2u0

(
v0

v

)â
exp

{
â

s − s0

k

} = k/â

We were prepared (by Joule) to find that cV , though independent of V , depends
semi-arbitrarily upon T , but discover that it has been forced by the laws of
thermodynamics to be a constant . And from this it follows that u(T, v) is of
necessity a linear function of T :

u(T, v) = cV T + constant

By natural convention we abandon the constant, which is to say: we adjust the
energy reference level so as to conform to the stipulation that u(0, v) = 0.

One lucky benefit of the simplifications latent in (313) is that certain
functional inversions that were formerly not feasible have become suddenly
elementary. It follows, for example, from (309) that

s(u, v) = cV log u
u0

+ k log v
v0

+ s0 (314.1)

which by u = cV T becomes

s(T, v) = cV log T
T0

+ k log v
v0

+ s0 (314.2)

and by pv = kT becomes

s(T, p) =
{
cV + k

}
log T

T0
− k log p

p0
+ s0 (314.3)

Bringing the last of those equations to (88.1) we find
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cp = T
(

∂s
∂T

)

p
= cV + k (315.1)

of which (compare (91.2) on page 80)

cp > cV (315.2)

is a corollary.

Appealing once again to the equation of state we find

s(p, v) = cV log p
p0

+ cp log v
v0

+ s0 (314.4)

from which it follows that when an ideal gas sample is isentropically expanded/
compressed one has

pV γ = constant (316.1)

where
γ ≡ cp/cV > 1 (317)

is sometimes called the “isentropic exponent.” Obvious variants of (316.1) are

Tvγ−1 = constant
Tp(1−γ)/γ = constant

One must look beyond thermodynamics itself to an underlying statistical
model to gain theoretical insight into the numerical value assumed by cV in any
particular case. For monatomic gases (dilute noble gases) one obtains187

cV = 3
2k whence cp = 5

2k and γ = 5
3

Later we will want to give careful attention to the distinction between
“reversible” and “irreversible” processes, but an anticipatory word may reduce
the risk of confusion. As they apply to quasi-static processes the adjectives
“adiabatic” and “isentropic” are synonyms:

d̄Q = TdS = 0 =⇒ dS = 0

But Joule’s “free expansion,” which proceeds (Figure 4) irreversiblibly by the
relaxation of a gross constraint (which is to say: non-quasi-statically), is
adiabatic but not isentropic; indeed, it follows directly from (314.2) that

∆sJoule ≡ safter − sbefore = k log v + ∆v
v > 0

as we had occasion to observe already on page 174 in connection with a
discussion of Gibbs’ paradox.

187 See again page 149 and Figure 54 on page 162.
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1

30

Figure 77: Adiabats

pvγ = constant : γ = 5
3 : constant = 1, 2, 3, 4, 5

of an ideal gas, inscribed on the pv-plane (v runs →, p runs ↑). For
comparison the isotherms

pv = constant

are shown in red.

2. Distribution of molecular speeds at thermal equilibrium. The notion that the
properties of bulk matter are to be attributed to the properties of “atoms” can
be traced back through Lucretius (c –bc) and Epicurus (c –bc) to
Democritus (c –bc) and was, of course, fundamental to Newton’s view
of the world. Newton himself attributed the gas laws (not very specifically) to
repulsive forces that static atoms were imagined to expert upon one another.
The idea that the properties of gases are to be attributed to kinetic activity
of the atoms was developed in some quantitative detail by Daniel Bernoulli
(–) in a paper—actually a chapter in a larger work () devoted
to hydrodynamics—that is generally considered to mark the beginning of the
kinetic theory of gases, but which attracted little attention. John Harapath
(–) independently reproduced and extended many of Bernoulli’s results
in a paper () which the Royal Society declined to publish, and John
Waterston (–) fared no better with the paper he submitted in .188
Several circumstances contributed to the disinterest-bordering-on-contempt

188 Waterston’s paper remained unknown until , when it was discovered
in the Society’s archives and published by Rayleigh. Waterston had better luck,
however, with some of his other work. There is evidence that a  publication
(abstract of the kinetic theory paper) influenced Krönig (), which in turn
influenced Clausius.
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with which the work of the early kinetic theorists was received:
• the force of Newton’s (in this instance misguided) influence;
• the prevalence of mistaken notions concerning the nature of temperature

and heat;
• the widely-shared view that work based upon the “atomic hypothesis” was

was necessarily too speculative to merit publication.

Each of those circumstances—except, perhaps, the last—had recently left
the stage by the time Clausius (–) stepped upon it with his “Ueber
die Art der Bewegung, welche wir Wärme nennen”189 () and became, in
Maxwell’s generous estimation, the founding father of kinetic theory. Clausius’s
early work—he remained intermittently active in the field until about —
contributed to Maxwell’s decision in  to turn his own attention to the
kinetic theory. He wrote six major papers on the subject between  (when
he was twenty-nine) and the year of his death, in , and it is the first of
those papers that brings me to the point of the preceding remarks:

Bernoulli had been content to assume that all the molecules in an
equilibrated gas have the same speed and, moreover, that one third of them move
parallel to each of the three space axes. The assumption that molecules contrive
to move with identical speeds is basic to the work also of Harapath, Waterston
and other early kinetic theorists. Even Clausius, though not the first to abandon
the second and most blatently artificial of Bernoulli’s assumptions (Clausius
assumed directional isotropy), found it natural to assume—at least tentatively
—that all molecules in any given gas sample zip about with the same speed.
But it was immediately evident to Maxwell that the molecules will move with
a statistically-determined variety of speeds, and that the shape of that
distribution is fundamental to the entire subject: with Maxwell the kinetic
theory of gases abruptly became—as it has remained—a statistical theory, a
kind of “statistical mechanics.”190

The fundamental object in kinetic-theory-according-to-Maxwell is a
function—I will call it n(xxx, vvv, t)—that, in a necessarily “course-grained” sense

189 This, of course, is the source of the title that Stephen Brush gave to his
elaborate history of the kinetic theory of gases, and it is to that monograph113

that I refer readers for details relating to the developments that I must be
content here merely to encapsulate.
190 Brush,113 in his §5.1, asks how it happened that Maxwell was led so
promptly to his “statistical approach,” and concludes that he worked under
the influence of a lengthy review of the probabilistic work of Quintelet that
Sir John Herschel had published in . C. W. F. Everitt, in Chapter 9 of
his James Clerk Maxwell: Physicist & Natural Philosopher (), suggests
that Maxwell may also have been predisposed to such an approach by his
work on the “Saturn’s ring problem” that—together with the first phase of his
electrodynamical work—had engaged his concentrated attention (–)
right up until the time he discovered Clausius’ work and turned to kinetic
theory.
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Figure 78: “Course graining” presumes cells d3xd3v large enough
that the physical discreteness of the gas remains invisible—large
enough that the cell statistic is well-defined and appears to change
smoothly/infinitesimally from cell to neighboring cell, yet not so
large that relevant detail is lost. It is a concept that seems
transparent on its face, but is difficult to define with precision : it
represents an attempt to adapt the methods of field theory to systems
that in some essential respects (collisional dynamics, applications
of the “mean free path” concept introduced by Clausius in )
must retain their discreteness. The cells and randomly positioned
“molecules” in the figure clearly do not conform to the course
graining principle, and suggest that any precise definition must take
into account the fluctational statistics.

(see the figure), describes the number of particles that at time t occupy the
neighborhood d3x of xxx and have velocities in the neighborhood d3v of vvv. In all
cases we have ∫∫∫∫∫∫

n(xxx, vvv, t) d3x d3v = N

At thermal equilibrium we expect the particle density function to become
t -independent (or “steady”), and in the absence of impressed forces (like gravity)
we expect the xxx-dependence to drop away (i.e., we expect the gas to become
spatially homogeneous), leaving

n(xxx, vvv, t) = N
V

· F (vvv) with
∫∫∫

F (vvv) d3v = 1
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Evidently

F (vvv) =
{

fraction of the molecules that have
velocities in the neighborhood d3v of vvv

and is, in effect, a probability distribution function. We are brought thus to
the starting point of Maxwell’s ingenous argument:

Maxwell assumes that the velocity distribution is isotropic in velocity space;
i.e., that F (vvv) depends upon the components vi of vvv only through the rotational
invariant

v2 ≡ vvv···vvv = v2
1 + v2

2 + v2
3

This is, in effect, to assume that F (vvv) is of the form

F (vvv) = ψ(v2)

Maxwell assumes additionally that the vi are independent random variables
(which, by isotropy, must be identically distributed), and is led thus to write

F (vvv) = φ(v1)φ(v2)φ(v3) = ψ(v2) (318)

This is the famous functional equation that lies at the base of Maxwell’s theory.
We turn now to the matter of its solution.191

Differentiating with respect to v1 and dividing by F (vvv) we have

φ ′(v1)
φ(v1)

= ψ ′(v2)
ψ(v2)

· 2v1

giving
φ ′(v1)
v1φ(v1)

= 2ψ ′(v2)
ψ(v2)

Similarly
φ ′(v2)
v2φ(v2)

= 2ψ ′(v2)
ψ(v2)

φ ′(v3)
v3φ(v3)

= 2ψ ′(v2)
ψ(v2)

The expression on the left side of the first equation is a function only of v1,
of the second . . . only of v2, of the third . . . only of v3. The same properties
must, of necessity, attach also to the expressions on the right sides of those
equations. But the latter expressions are identical . Consistency requires that
the expression in question be some (v1, v2 and v3-independent) constant .

191 For alternative discussions of the same problem see, for example,
L. B. Loeb, Kinetic Theory of Gases (), page 75 or M. Born, Natural
Philosophy of Cause & Chance (), Appendix13. Maxwell himself considered
the problem too elementary to merit discussion, and simply wrote down the
solution.
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Agreeing for the moment to call the constant −λ, we infer that φ(v) is a solution
of

φ ′(v) = −λvφ(v)

Immediately
φ(v) = Ae−

1
2λv2

which gives
F (vvv) = A3 e−

1
2λ(v2

1 + v2
2 + v2

3 )

Normalizability requires λ > 0: to render that condition automatic (and to
obtain formulæ that look like Maxwell’s) we write 1/α2 in place of 1

2λ and
obtain

F (vvv) =
( 1

α
√

π

)3
e−(v2

1 + v2
2 + v2

3 )/α2
: normalized (319)

=
{

normal distribution centered at the
origin in 3-dimensional velocity space

In many contexts the directional information implicit in vvv is irrelevant:
what one really wants to know about is the equilibrium distribution f(v) in
1-dimensional “speed space.” Immediately

f(v) dv =
( 1

α
√

π

)3
e−v2/α2

4πv2 dv (320)

From d
dv f(v) ∼ v

(
1− v2

α2

)
e−(v2/α2) we see that f ′(v) vanishes at v = 0, at v = α

and at v = ∞. This is evident already in Figure 73, which displays f(v) in the
case α = 1, and supplies information

vmodal = α (321.1)

in which we can read a tentative (but as yet unphysical) interpretation of the
parameter α.192 With the assistance of Mathematica we compute

vmean = 〈v〉 =
∫ ∞

0
vf(v) dv = 2√

π
α = 1.12838α (321.2)

vrms =
√
〈v2〉 =

[ ∫ ∞

0
v2f(v) dv

]1
2

=
√

3
2 α = 1.22474α (321.3)

192 It is evident in (319) that

vvvmodal = 000

That the maximum of f(v) is shifted away from the origin can be
understood as a result of competition between the decreasing value of F (vvv)
and the increasing volume 4πv2 dv of spherical shells as one moves away from
the origin in vvv -space.
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and find additionally that vmedian—defined

∫ median

0
f(v) dv =

∫ ∞

median
f(v) dv

—is located at a position

vmedian = 1.08765 α (321.4)

that conforms nicely to the rule of thumb193

vmedian =
2vmean + vmodal

3
= 1.08559 α

We note in passing that vmodal < vmedian < vmean < vrms.

A physical interpretation of α emerges when we assign to the molecules a
mass m and look to the expected kinetic energy/molecule :

ε ≡ 〈 1
2mv2〉 = 1

2m(vrms)
2 = 3

4mα2

For then U = Nε = N 3
4mα2 and, if we allow ourselves to borrow U = N 3

2kT
from the thermodynamics of monatomic gases, we have

α =
√

2kT/m (322)

The Maxwellian distribution (320) becomes

f(v) =
(

m
2πkT

)3
2
4πv2e−

1
2mv2/kT (323)

and from (321.3) we obtain a statement

vrms =
√

3kT/m

that speaks informatively about the thermal physics of a gas, but in a way that
lies quite beyond the reach of thermodynamics.194

193 A. T. Doodson, “Relation of mode, median and mean in frequency curves,”
Biometrika 11, 425 (1917).
194 We compute, for example, that

vrms =






431 meter/second for argon at 300K

1.07×10−4 meter/second for rubidium at
the 39.5 × 10−12K mentioned on page 210
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3. Kinetic derivation of the perfect gas law: pressure. A “kinetic theory of gases”
must—minimally—produce pV = NkT (which Bernoulli was the first to do,
with a theory that can be criticized on the ground that it did not accomplish
much else), and to achieve that objective we must first come to an understanding
concerning the kinetic meaning of “pressure.” The essential idea is indicated
by the following figure:

Figure 79: In elementary kinetic theory one construes “pressure”
to be a measure of the time-averaged impulse per unit area that the
walls exert in order to elastically reflect

pppincident ≡ ppp‖ + ppp⊥ "−→ pppreflected ≡ ppp‖ − ppp⊥

the incident hailstorm of molecules. It should be borne in mind that
that imagery is specific to the kinetic theory of gases : it does not
pertain usefully to “pressure” as the concept is encountered in the
physics of solids, liquids, thermalized radiation . . .

To develop the Maxwellian details we look to Figure 80. The cylinder has
volume dA · vdt · cos θ and contains (on average) a number of molecules given
by

N
V

f(v) sin θ dϕ · dθ
4π

dv · dA · vdt · cos θ

To each such molecule the wall imparts an impulse given by 2mv cos θ. The
time-averaged impulse per unit area imparted to that

{
v, θ, ϕ

}
-parameterized

population is given therefore by

partial pressure = 2mN
V

f(v)v2 sin θ dϕ · dθ
4π

cos2 θ dv

and upon summing over all such populations195 we obtain

p = 2mN
V

3
2α2

2
3π

4π
= NkT

V
: perfect gas law

195 Use
∫ 2π

0
dϕ ·

∫ 1
2 π

0
cos2 θ sin θ dθ = 2

3π and recall that, by (321.3) and (322),
∫ ∞

0
v2f(v) dv = 3

2α2 with α2 = 2kT/m.
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vd
t

θ

ϕ

Figure 80: Representation of the molecules that—approaching with
speeds in the neighborhood dv of v from spherical addresses in the
neighborhood

{
dθ, dϕ

}
of

{
θ, ϕ

}
—bounce in time dt off the wall

element dA and rebound elastically toward spherical addresses in the
neighborhood of

{
θ, ϕ + π

}
.

While ascribing “pressure” to “molecular mechanics at the wall” might
be justified operationally (in the sense that it provides a fair representation
of the action of most simple pressure gauges), the fact of the matter is that
we find it useful to assign pressure also to interior points. We are led thus
to a slight variant (Figure 81) of the preceding argument, the details of which
are most conveniently developed (not in spherical coordiates, as above, but)
in reference to a Cartesian coordinate system. We will find it instructive to
allow n(xxx, vvv, t) to be—at least initially—non-Maxwellian/arbitrary. We proceed
from the observation that the total linear momentum PPP+(xxx, t; âaa) dAdt of the
molecules that in time dt pass in the positive direction through the oriented
surface-differential-at-xxx can be described

PPP+(xxx, t; âaa) · dAdt =
∫

+
(mvvv)(v cos θ dAdt)n(xxx, vvv, t) dvvv

= +
∫

+
(mvvv)(vvv···âaa) n(xxx, vvv, t) dvvv · dAdt

where
∫

+
signifies integration over that half of velocity space in which vvv···âaa ! 0.

The total momentum of the molecules that pass through in the negative
direction (which is to say: positively with respect to −âaa) can by the same
argument be described

PPP−(xxx, t; âaa) · dAdt = −
∫

−
(mvvv)(vvv···âaa) n(xxx, vvv, t) dvvv · dAdt
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âaa

xxx

Figure 81: If we look to the signed momentum flux through an
oriented ring we are led to a conception of “pressure” that is
meaningful at interior points. The unit vector âaa describes the
orientation of the ring-at-xxx, which has differential area dA.
Molecules that pass through the ring will be said to be positive or
negative according as âaa···vvv ≷ 0.

To capture the essence of the physical idea presented in Figure 79 we introduce

PPP (xxx, t; âaa) ≡ PPP+(xxx, t; âaa) − PPP−(xxx, t; âaa) =
∫

(mvvv)(vvv···âaa) n(xxx, vvv, t) dvvv
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which, we note, can be written

PPP (xxx, t; âaa) = P(xxx, t)âaa

with
P(xxx, t) ≡ ‖Pij(xxx, t)‖

and
Pij(xxx, t) ≡ m

∫
vivj n(xxx, vvv, t) dvvv (324)

From
[
n(xxx, vvv, t) dvvv

]
= 1

volume it follows that196

[
Pij

]
= energy

volume
= force

area
= pressure

If, in particular, the number-density function n(xxx, vvv, t) refers to a molecular
distribution that is homogeneous, isotropic and steady it becomes natural to
write

n(xxx, vvv, t) · dv1dv2dv3 = N
V

n(v) · v2 sin θ dϕdθdv

with
v1 = v sin θ cos ϕ

v2 = v sin θ sin ϕ

v3 = v cos θ

and where it is required of n(v) only that
∫ ∞

0
n(v) 4πv2dv = 1. It then follows

(according to Mathematica) from (324) that

Pij = 1
3mN

V

∫ ∞

0
n(v) 4πv4 dv · δij

and if we assign to n(v) 4πv2 its Maxwellian value (323) we obtain

Pij = 1
3mN

V

∫ ∞

0
f(v)v2 dv · δij = N

V
kT · δij

It is, by this line of argument, a property of Maxwellian gas that at all times
t and at all interior points xxx the signed momentum flux in the direction âaa can
be described

PPP (xxx, t; âaa) = N
V

kT · âaa

In the argument that proceeded from Figure 80 we in effect placed xxx on the

196 We note in passing that—no accident!—the construction (324) bears a
marked resemblance to the construction that at (320) on page 223 in Chapter 3
of classical electrodynamics (/) describes the stress-energy
tensor σµν of (relativistic) “dust.”
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wall, placed âaa normal to the wall, and identified the resulting “signed
momentum flux” with “pressure at the wall.” By the more recent argument
we have managed to carry the “pressure” concept into the interior of the gas:
for Maxwellian gases we have—constantly, at all interior points—

P =




p 0 0
0 p 0
0 0 p



 with p = 1
3 trP = N

V
kT

We have, with Maxwellian assumptions, recovered the perfect gas law . . .but
we have, for our effort, been rewarded with something more:

Looking back again to (324), we are led to write

p(xxx, t) = 1
3 trP(xxx, t) = 1

3m

∫
(v2

1 + v2
2 + v2

3)n(xxx, vvv, t) dv1dv2dv3 (325)

to assign plausible meaning to the instantaneous local pressure in the general
(non-equilibrated non-Maxwellian) case. By this conception

local pressure = trace of a local symmetric matrix
= local rotationally invariant scalar

and captures only some of the information written into the structure of the
local pressure tensor.197

4. Alternative derivations of the Maxwellian distribution. The argument that
led Maxwell () to the Maxwellian distribution is subject to the criticism
that it achieves its elegant efficiency by dint of a statistical assumption—
namely,198 that the components vi of vvv are independent random variables—the
physical basis of which is by no means obvious. In  Maxwell—granting that
his former assumption “may appear precarious”—constructed an alternative
derivation that went some distance toward recognizing that it is not by the laws
of statistics but by the laws of mechanics that molecules move. He looked to
binary collisions (Figure 82), and argued that at thermal equilibrium one should
expect “detailed balance” in the sense that each scattering process (left) should
occur with the same frequency as its time-reversed mate (right). Assuming
(not the individual components vi of a single particle but) the vvv and vvv ′ of
each colliding pair to be statistically independent and identically distributed,
he was led to write

F (vvv)F (vvv ′ ) = F (uuu)F (uuu ′ )

which in combination with the energy conservation condition

v2 + v ′2 = u2 + u ′2

197 For more detailed discussion of this subject—and, indeed, of virtually all
aspects of the kinetic theory of gases—see S. Chapman & T. G. Cowling, The
Mathematical Theory of Non-Uniform Gases (), which bears the subtitle
“An account of the kinetic theory of viscosity, thermal conduction, and diffusion
in gases.”
198 See again page 250.
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uuu uuu ′ vvv ′ vvv

ω ω

vvv vvv ′ uuu ′ uuu

Figure 82: At left : binary collision from which particles with initial
velocities vvv and vvv ′ depart with velocities uuu and uuu ′. At right : the
time-reversed process. The shaded blobs allude to the package of
“impact parameters” that (except in the one-dimensional case) must
be specified before the out-velocities become well-defined functions of
the in-velocities : these enter into Boltzmann’s line of argument, but
not into Maxwell’s.

leads back again to (319). But here again, the argument hinges on a statistical
assumption (if, arguably, a softer one), not upon a secure mechanical theorem.

Maxwell’s revised argument was published in , the same year that
Boltzmann completed his doctorate and began the kinetic theoretic research
that was to occupy him for nearly forty years, the initial objective of which
was “to establish a direct connection between the 2nd law of thermodynamics
and the mechanical principle of least action.”199 Already in  Boltzmann
noticed that in the presence of a potential one has this generalization

n(xxx, vvv) = N · 1
Z

e
− 1

kT

{
1
2mv2 + U(xxx)

}

of Maxwell’s result. Thus did gas theory give rise to the “Boltzmann factors”200

destined to become fundamental to the statistical mechanics of all equilibrated
systems, whether gaseous or not.

In that same early paper Boltzmann presented a combinatorial derivation
of the Maxwellian distribution (now, by many authors, called the “Maxwell-
Boltzmann distribution”) of which I provide here a simplified account. Suppose
N identical molecules, each of mass m, are confined to a spatial volume V ,
within which they move freely (i.e., in the absence of an impressed potential)

199 I quote Brush,113 page 232. It was, by the way, already clear to Maxwell
that the 2nd law springs from statistics, not from mechanics.
200 See again page 122.
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with total energy E. Note that 3-dimensional velocity space, though generally
unbounded, is for purposes of the present discussion bounded: it is spherical,
with volume Ω = 4

3π(2mE) 3
2 . Resolve the interior of that velocity-sphere into

ennumerated “cells,” and let ωi denote the volume of the ith cell.201 The
probability that a molecule, if dropped randomly into 6-dimensional state space,
will land in the ith cell is, we will assume, given by

pi = ωi

Ω

If we drop N molecules into state space the likelihood that we will find n1

molecules in cell #1, n2 molecules in cell #2, etc. is given by

P = N !
n1!n2! · · ·

pn1
1 pn2

2 · · ·

Boltzmann would have us maximize P—equivalently (but more conveniently):
maximize

log P = log N ! +
∑

i

{
ni log pi − log ni!

}

—subject to the constraints ∑

i

ni = N

∑

i

ni εi = E

where εi ≡ 1
2mv2

i and vi marks the location of the ith cell.

In leading Stirling approximation (page 106) we have

log P =
{
N log N − N

}
+
∑

i

ni

{
log pi − log ni

}
+ N

and confront a constrained maximization problem, for which Lagrange devised
the method of choice, the so-called “method of undetermined multipliers.”202

To
δ log P =

∑

i

{
log pi − log ni − 1

}
δni = 0

we add
(α + 1)

∑

i

δni = 0 and − β
∑

i

εiδni = 0

201 The artificial “discretization” of intrinsically continuous variables was, for
Boltzmann, more than a trick: it was a point of methodological philosophy, and
lent his work a “quantum mechanical” cast more than thirty years before the
invention of quantum mechanics. See Brush,113 page 235.
202 See R. Courant & D. Hilbert, Methods of Mathematical Physics (),
page 165 or D. ter Haar, Elements of Statistical Mechanics (), page 444.
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and obtain log pi − log ni + α − βεi = 0 or

ni = pi e
α−βεi

Passing now to the continuous limit, we have

F (vvv) = A3 e
−β 1

2mv2

From the simultaneous requirements that

∫∫∫
F (vvv) dvvv =

∫ ∞

0
A3 e

−β 1
2mv2

4πv2 dv = 1

and ∫ ∞

0

1
2mv2 · A3 e

−β 1
2mv2

4πv2 dv = 3
2kT

we are led back again to precisely Maxwell’s result.203

The 24-year-old Boltzmann had every reason to be proud of himself
(though his biographers suggest that was not his nature), for he had extracted
Maxwell’s result from a statistical assumption that has about it the “look of
generality”. . . by an argument that depends only incidentally/inessentially on
the physics of gases (and not at all on the details of collisional mechanics). He
had, in short, planted the seed of a statistical theory of thermalized-systems-
in-general—a fact to which Maxwell himself drew attention in a long paper
“On Boltzmann’s theorem on the average distribution of energy in a system
of material points” published shortly before his death in . In retrospect,
Maxwell’s original argument is seen to be valuable as much for its shortcomings
as for its striking success, for it was the two together that provided Boltzmann’s
motivation.

In setting up the identification

Maxwellian distribution ⇐⇒ most probable distribution

Boltzmann raised this subordinate question: How probable is “most probable”?
That question was explored already in §6 of Chapter 3, in a discussion which
led (as N becomes large) to this one-word response: Overwhelmingly !

203 Introduce (322) into (319). It is, by the way, a lesson of experience
that Lagrange multipliers, when they arise from physical argument, usually
have important physical significance. Certainly that is the case in the present
instance, where we encounter

Lagrange multiplier β = 1
kT
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Boltzmann (), and also Maxwell (, in the paper mentioned above),
were led therefore to remark—ergodic hypothesis 204 —that if n(xxx, vvv, t) serially
visited all values consistent with the imposed constraints. . . then it might
plausibly be expected (on conjectured mechanical grounds) to spend nearly
all of the time at or in the immediate vicinity of its Maxwellian most-probable
value. Both recognized that while “ergodic theory” might be easiest to develop
in relation to gases or other idealized simple systems it should—in principle—
pertain to all thermalized systems.205

5. Boltzmannequation& theH-theorem. Retreating now from systems-in-general
to gases in particular . . .Boltzmann—like Maxwell before him—recognized it to
be a fact of experience that an initially disequilibrated gas will spontaneously
equilibrate

n(xxx, vvv, t) −−−−−−−−−−−−→ nMaxwellian(xxx, vvv) (326)

and drew from this fact some tentative conclusions relating to the mechanical
stability of the Maxwellian distribution. Thus in  was Boltzmann motivated
to develop a dynamical theory of disequilibrated gases from which (326) might
be recovered as a special consequence—a theory which I must on the present
occasion be content merely to sketch.206

Represent the initial state of the gas by sprinkling points
{
xxxi, pppi

}
onto

6-dimensional phase space . . . or which is (by ppp = mvvv) the same but more
convenient: by sprinkling points

{
xxxi, vvvi

}
onto 6-dimensional state space, and

let n(xxx, vvv, 0) serve to describe (in the course-grained sense of Figure 78) the
initial density of those points. Setting aside for the moment the effect of binary
collisions, we assume that the particles move non-interactively, as described by
the shared Lagrangian

L = 1
2mv2 − U(xxx)

↑—describes such EXTERNAL FORCES as may act upon the molecules

and will write
xxx '→ xxx(t) = XXX(xxx, vvv, t)
vvv '→ vvv(t) = VVV (xxx, vvv, t)

to describe that motion.

From Liouville’s theorem (i.e., from the “incompressibility of phase flow”)
it follows now that

n
(
xxx(t), vvv(t), t

)
= n

(
xxx, vvv, 0

)

204 See §10.10 “The ergodic hypothesis of Boltzmann andMaxwell” in Brush.113
According to Brush the term “ergodic” was introduced by Boltzmann, but
originally had a meaning rather different from the meaning it has acquired.
205 For a more detailed account of the method of the most probable distribution
see (for example) §4.3 in K. Huang’s Statistical Mechanics (2nd edition ).
206 For many of the missing details and basic references see statistical
physics (), Chapter 2, pages 21–40.
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streamline in

absence
of

interaction
s

vvv

Contains N0 molecular points

Contains Nt = N0 + Nin − Nout

xxx

Figure 83: Schematic representation of Boltzmann’s collisional
modification of Liouville’s representation of the phase flow of a
population of noninteractive molecules.

which upon differentiation with respect to t becomes
{

∂
∂t

+ vvv···∇∇∇x + aaa···∇∇∇v

}
n(xxx, vvv, t) = 0 : collisional interactions turned off

where aaa ≡ v̇vv = 1
mFFF = − 1

m∇∇∇xU .

To take intermolecular collisions into account Boltzmann writes
{

∂
∂t

+ vvv···∇∇∇x + aaa···∇∇∇v

}
n(xxx, vvv, t) = In[n] − Out[n]

where In[n] and Out[n] are functionals of n(xxx, vvv, t) that describe respectively
the rate at which collisions (see again Figure 82) are
• delivering molecules into and
• removing them from

the neighborhood of
{
xxx, vvv

}
. Our immediate assignment is to construct workable

descriptions of In[n] and Out[n].

We restrict our attention to binary collisions (predominant in dilute gases)
and not that for two particles to collide they must be at the same point xxx.
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Energy and momentum conservation

u2 + u ′2 = v2 + v ′2 and uuu + uuu ′ = vvv + vvv ′

impose only 4 constraints on the 6 components of the collision products uuu
and uuu ′ so the collisional details are necessarily contingent upon specification of
certain side conditions (the values of such generalized “impact parameters” as
are relevant to the physics of the collisional processes in question: those will
collectively be denoted ω). That understood, we have

uuu = uuu (vvv, vvv ′, ω)
uuu ′ = uuu ′(vvv, vvv ′, ω)

Pretty clearly

Out[n] dvvv = n(xxx, vvv, t) dvvv ·
∫

n(xxx, vvv ′, t) dvvv ′ ·
∫

A(ω) dω

where A(ω) assigns statistical weight to the various ω -values. Similarly but
more awkwardly

In[n] dvvv =
∫∫∫

[vvv ]
n(xxx,uuu, t) n(xxx,uuu ′, t)A(ω ′) duuu duuu ′dω ′

where the
∫∫∫

ranges over those coordinated values of uuu , uuu ′ and ω ′ which (see
again the right side of Figure 82) produce post-collisional velocities that lie
in the neighborhood dvvv of vvv. A change of variables (intended to reduce the
awkwardness) gives

= dvvv
∫∫

n
(
xxx,uuu(vvv, vvv ′, ω), t

)
n
(
xxx,uuu ′(vvv, vvv ′, ω), t

)
A(ω)J dvvv ′dω

where, by the time-reversal invariance of the collision process, the Jacobian

J ≡
∣∣∣
∂(uuu,uuu ′, ω ′)
∂(vvv , vvv ′, ω )

∣∣∣ = 1

Putting the pieces together we obtain the celebrated Boltzmann equation
{

∂
∂t

+ vvv···∇∇∇x + aaa···∇∇∇v

}
n =

∫∫
(n̄ n̄ ′ − n n ′)A dvvv ′dω (327)

where
n ≡ n(xxx, vvv, t)

n ′ ≡ n(xxx, vvv ′, t)
n̄ ≡ n̄(xxx, vvv, vvv ′, t) ≡ n

(
xxx,uuu(vvv, vvv ′, ω), t

)

n̄ ′ ≡ n̄(xxx, vvv, vvv ′, t) ≡ n
(
xxx,uuu ′(vvv, vvv ′, ω), t

)

The Boltzmann equation is a beast, a non-linear integro-differential
equation that yields to exact analytical treatment only in a few artificial cases.
It is, however, fundamental to a lot of physics, the equation one must solve—
approximately (see Chapman & Cowling197), numerically—to address questions
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relating to the transport of mass/energy/momentum in dilute disequilibrated
gases. Happily, we have no call to venture down that tangled trail: we are
concerned with the thermal physics of equilibrated gases . . . and, at the moment,
with the light Boltzmann was able to shed on the approach to equilibrium.

Let us, for simplicity, assume that our gas is subject to no externally
impressed force (U(xxx) = 0 ⇒ aaa = 000) and—which is a bit more problematic—
that spatial uniformity has been established (∇∇∇xn = 000):

n(xxx, vvv, t) '−→ N
V

F (vvv, t) as on page 249

The Boltzmann equation then becomes

∂
∂t

F =
∫∫

(F̄ F̄ ′ − F F ′)A dvvv ′dω (328)

Thus prepared, Boltzmann (with the variational principles of mechanics on his
mind?) had the genius to introduce

H ≡ 〈 log F 〉 =
∫

F log F dvvv (329)
↑
—upper case η, intended to suggest “entropy”

and to study dH/dt. Immediately

dH
dt

=
∫

(1 + log F )∂F
∂ t

dvvv

which by appeal to the simplified Boltzmann equation (328) becomes

dH
dt

=
∫∫∫

(1 + log F )(F̄ F̄ ′ − F F ′)A dvvv dvvv ′dω

Under the
∫∫∫

we can with impunity interchange vvv and vvv ′ (struck molecules
with those doing the striking) so

=
∫∫∫

(1 + log F ′ )(F̄ ′ F̄ − F ′ F )A dvvv dvvv ′dω

And by time-reversal invariance (i.e., by the familiar change of variables) the
preceding equations become

=
∫∫∫

(1 + log F̄ )(F F ′ − F̄ F̄ ′)A dvvv dvvv ′dω

=
∫∫∫

(1 + log F̄ ′ )(F ′ F − F̄ ′ F̄ )A dvvv dvvv ′dω

Adding these four (equivalent) expressions together and dividing by 4, we find

dH
dt

= 1
4

∫∫∫ {
(F̄ F̄ ′ − F F ′) log FF ′

F̄ F̄ ′

}
A dvvv dvvv ′dω (330)

Now A(ω) is, as a probability density, necessarily non-negative. Moreover,
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log FF ′

F̄ F̄ ′ is






positive or negative according as FF ′ ≷ F̄ F̄ ′

0 if and only if FF ′ = F̄ F̄ ′

It follows therefore from (330) that

dH
dt

" 0, with equality if and only if FF ′ ≡ F̄ F̄ ′ (331.1)

which is Boltzmann’s H-theorem : as the system relaxes (evolves) the value of
H necessarily decreases (see the figure), until at equilibrium we have207

H(t) ↓ H(∞) = Hmin and FF ′ ≡ F̄ F̄ ′ (331.2)

—the latter (I have used ≡ to signal that FF ′ = F̄ F̄ ′ holds for all values of vvv
and vvv ′) being the statement of detailed balancing .208

H

Hmin

t

Figure 84: Schematic representation of the temporal trend of H(t),
according to (331). It is remarkable that Boltzmann was able to say
sharp things about the trend while leaving us almost powerless to
compute the details, or even to estimate the characteristic relaxation
time.

The equilibration of a gas, microscopically regarded, is a many-variable
process that terminates non-uniquely. Kinetic theory presents a much-simplified
account

n(xxx, vvv, t) −−−−−−−−−−−−→ n(xxx, vvv,∞) = nMaxwellian(vvv)

of that process, of which (331.2) provides a pallid projection, a single-parameter
representation. Remarkably, it is—by the following line of argument—possible

207 Implicit here is the assumption that H is bounded below. For the proof
see the footnote on page 70 of Chapman & Cowling.197
208 See again page 257 and R. C. Tolman, Principles of Statistical Mechanics
(), page 165.
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to “de-project,” to extract from (331.2) the specific design of the Maxwellian
distribution. To that end we undertake to

minimize H ≡
∫

F log F dvvv

subject to the requirements that
• the particle number N
• the total linear momentum PPP and
• the total energy E

have prescribed constant values. Those five constraints are readily brought to
the form ∫

F (vvv) dvvv = 1
∫

mvvv · F (vvv) dvvv = PPP/N
∫

1
2mv2 · F (vvv) dvvv = E/N






(332)

Immediately

δH =
∫

(1 + log F )δF dvvv

so if we again employ the Lagrange’s method of undetermined multipliers
(page 259) to implement the constraints we obtain

∫ {
(1 + log F ) + α 1

2mv2 + βββ ···mvvv + γ
}

δF dvvv = 0

giving

F (vvv) = e
−(1 + γ) − α 1

2mv2 − βββ ···mvvv ≡ e
−(av2 + 2bbb···vvv + c)

Returning with this information to (332) we (with Mathematica’s assistance)
compute

e−c(π/a)
3
2 eb

2/a = 1

−m(bbb/a) · e−c(π/a)
3
2 eb

2/a = PPP/N

1
2m3a + 2b2

2a2
· e−c(π/a)

3
2 eb

2/a = E/N

with b2 ≡ bbb···bbb. For gases at rest PPP = 000 ⇒ bbb = 000 and the preceding equations
simplify:

e−c(π/a)
3
2 = 1

3
4 (m/a) · e−c(π/a)

3
2 = E/N

whence

a = 3
4m/ε : ε ≡ E/N ≡ average kinetic energy per molecule

e−c = (a/π)
3
2 =

( 3m
4πε

)3
2
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It has been established that ε = 3
2kT , so in the rest frame of a thermalized gas

we have

F (vvv) =
(

m
2πkT

)3
2
e
− 1

2mv2/kT

which exactly the Maxwellian result, encountered first on page 251 and most
recently on page 260.209

But the final movement of this sonata has yet to be performed. Noting
that

F (vvv) '→ F(vvv) ≡ N
V

F (vvv) sends H '→ H ≡
∫

F log F dvvv

we ask: What is the value of Hmin? By computation

Hmin =
∫ ∞

0

N
V

(
m

2πkT

)3
2
e
− 1

2mv2/kT
{

log
[
N
V

(
m

2πkT

)3
2
]
− mv2

2kT

}
4πv2 dv

= N
V

{
log
[
N
V

(
m

2πkT

)3
2
]
− 3

2

}

= −
Nk
{

log V + 3
2 log T − log N + 3

2 (1 − log[m/2πk])
}

kV
(333)

Now, we’ve known for a long time210 that the entropy of an ideal monomolecular
gas can be described

S = Nk
{

log V + 3
2 log T

}
+ constant

and211 that the adjustment

↓
Sindistinguishable = Nk

{
log V + 3

2 log T − log N
}

+ constant

provides an avenue of escape from Gibbs’ paradox. Evidently

Sindistinguishable = −kV Hmin

and Boltzmann’s dH/dt " 0 can be read as a statement—specific to the theory
of gases—of the measured entropy increase dS/dt # 0 that attends the
thermalization process . . . in gases, but presumably in all systems.

This, of course, presumes that we have means to step outside of the theory
of thermalized systems (thermodynamics, statistical mechanics) and assign

209 We have argued here from δH = 0. Alternatively but equivalently, one
could argue from the detailed balance condition FF ′ ≡ F̄ F̄ ′: this is done by
Chapman & Cowling,197 pages 25–28.
210 See (28) on page 42; also (23) on page 33, (188.2) on page 149.
211 See again page 176.
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entropy values to the non-thermalized states of many-body systems. And this,
in the

S = k log W

inscribed on Boltzmann’s tombstone,212 we do have.

The developments described above—which were worked out and published
by Boltzmann during the ’s, while Maxwell still lived—clarified some
standing questions and at the same time posed some disturbing new questions.
Both aspects of the work contributed vitally to the further development of
thermal physics:

• Though rooted in the collisional physics of gases (rooted, that is to say,
in kinetic theory—this though the influential Ernst Mach, beginning in
 and continuing up until his death in , argued vigorously that
“atoms do not exist”213), the abstracted essentials of Boltzmann’s results
suggested the possibility and rough outline of a statistical mechanics of
(non-gaseous) systems-in-general.

• The drift of the H-theorem suggested that thermostatics—proper name
of what we inappropriately call “thermodynamics”—might be embedded
within a thermodynamics that has things to say not only about equilibrated
states but also about the irreversible approach to equilibrium, a theory into
which t enters as a variable.

• It was remarked by Kelvin () that it is mysterious how classical
mechanics—the time-reversal invariance of which was explicitly invoked at
several points214 by Boltzmann—can give rise to a result (the H-theorem)
that does not share that invariance . . . and that it is not obvious where, in
the chain of argument, the symmetry in question is broken. The problem
is a deep one: it was addressed by Boltzmann himself but continued to
fester, was vigorously debated by Loschmidt, Poincaré, Zermelo and others
in the ’s, and its quantum mechanical descendent is still kicking. To
pursue the topic is to confront a fascinating nest of deep questions which,
unfortunately, do not admit of brief discussion: I must, therefore, refer my
reader to the vast literature.215

I conclude this discussion with a speculative remark: The H-theorem, as
it issued Boltzmann’s inquiry into the kinetic theory of gases, can be formulated

212 See again pages 34, 126 and 132. I remark again that the inscribed equation
is due actually to Planck: see page 81 in E. Broda, Ludwig Boltzmann : Man,
Physicist, Philosopher (). A photo of the tombstone faces the title page.
213 See Chapter 8 in Brush113 for a balanced discussion of Mach’s position.
214 See, for example, page 263.
215 Places to start: §§6.3 & 14.7 in Brush;113 Chapters 1 & 2 in Ehrenfest (cited
on page 171); §4.4 in Huang;205 pages 349–354 in ter Haar;202 pages 58–64 in
Born.191
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dS
dt

=






non-negative expression that
issues from the averaged details of collisional dynamics and
vanishes when S assumes the maximal value
consistent with all imposed constraints

It seems plausible that to obtain a statement appropriate to systems-in-general
we have only to abandon the second gas-specific line on the right, inserting in
its place something like “issues from mechanical details of the relaxation process
and.” What specifically to insert on the right is case-dependent, and remains
obscure in all cases (even the case addressed by Boltzmann!), but the “logistic
equation”

dS
dt

= r(Smax − S)S : S0 ≡ Sinitial " Smax ≡ Sm (334.1)

(here r is a constant with enforced physical dimensions) would appear to model
the typical situation. The general solution can be described

S(t) = Sm

[
1 + Sm − S0

S0
e−rSm t

]
–1

(334.2)

and for t so large that Sm − S0

S0
e−rSm t - 1 one has

S(t) ∼ Sm

[
1 − Sm − S0

S0
e−rSm t + · · ·

]

1 2

1

10

Figure 85: Graph of the growth of S(t), computed from (334.2)
with r = 1, S0 = 1 and Sm = 10.

From [r ] = 1
[k ]·time I infer that one would (at the very least) have to extract

a “characteristic time” from the microphysics in order to make such a theory
work. Note that (334.1) does mimic the nonlinearity of Boltzmann’s equations.
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6. van der Waals gases. We have been concerned thus far with the theory of
ideal or perfect gases, which we have approached from several angles. That
theory serves remarkably well to describe the properties of real gases that are
sufficiently rare, sufficiently hot (yet not “relativistically hot:” kT ≈ mc2 ).
And it describes the noble gases (weakly interactive molecules) under more
moderate conditions. But physicists and engineers have been aware for centuries
that the theory of ideal gases pertains only as a rough approximation to the
physics of (for example) steam, and it is obvious that the theory fails totally to
account for the phase changes

gas −−−−−−−−−−−−→
condensation

liquid −−−−−−−−−−−−→
solidification

solid

that gases were found in the early 19th Century to undergo at low temperatures/
high pressures (and that are, of course, written onto the face of the physics of
water vapor).

The theory of real gases begins, in effect, with the doctoral dissertation
“On the continuity of the liquid and gaseous states” that Johannes Diderik van
der Waals (–) submitted to Leiden University in , and that the
enthusiastic review published by Maxwell in  brought to the attention of
the world.216

One might suppose that van der Waals—if his objective was to modify
the established theory of ideal gases—would proceed by modification of the
statement

U(S, V, N) = NcT0

(
V0

V

)k/c
exp
{

S
Nc

}

from which the entire theory (actually a c-parameterized class of theories)
is known217 to proceed. But in point of fact he elected to work closer to the

216 van der Waals came from a Leiden family of such modest means that
his educational opportunities were limited. He was approaching 30 when he
managed to obtain teaching certificates from Leiden University and to find
employment as a secondary school teacher. Further study of mathematics
and physics at the University was—because he had no command of Latin and
Greek—not an option, so he worked independently until (owing to a lucky
change in the law) it became possible to obtain an exemption from the classical
language requirement. In —at the age of nearly 40—van der Waals became
the first (and was for 20 years the only!) professor of physics at the new
University of Amsterdam. van der Waals’ ideas quickly gained wide acceptance
(Maxwell remarks of the thesis that it “has certainly directed the attention of
more than one inquirer [himself] to the study of the Low-Dutch in which it is
written”)and one can look to his influence for the source of the traditional Dutch
strength in experimental/theoretical many-body physics (recall that it was in
Holland that helium was first liquified, and that both superconductivity and
superfluidity were discovered). It is a tradition that continues undiminished:
see recent volumes of Physica.
217 See again page 63.
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phenomenological surface of the theory, by modification of the equation of state

pV = NkT

—this even though the equation of state serves by itself to support only a
fragment (the c-independent fragment) of the full theory. Though he sought to
construct not a kinetic theory, certainly not a statistical mechanics, but only a
thermodynamics of real gases, it was from the essential imagery of the kinetic
theory that he took his point of departure. van der Waals conjectured that
molecules experience
• strongly repulsive forces when sufficiently close together;
• weakly attractive forces (“van der Waals forces”) when relatively far apart.

The “short-range strong repulsion” is consistent with the “billiard ball model”
that had been employed already by others, and suggested to van der Waals
(as it had suggested to others) that the volume available for exploration by a
molecule should be described

volume of box−net volume of other molecules︸ ︷︷ ︸
|
= (N − 1) · (volume b of individual molecule)

And from the conjectured “weak long-range attraction” he inferred that the
walls, which exert pressure p in their effort to reflect the incident molecular
hailstorm (see again Figure 79), are assisted by the attractive action of molecules
situated in the deeper interior of the box, who contribute a term proportional to

1
3 some power, call it n

: 3 ≡ (V/N)
1
3 ≈ mean intermolecular distance

that describes what is, in effect, a “surface tension.” One might expect on such
grounds to have something like

[
p + a(N/V )

1
3n
][

V − Nb
]

= NkT

or (dividing by N)
(
p + av− 1

3n
)(

v − b
)

= kT : v ≡ V/N ≡ volume per molecule

For whatever inspired reasons,218 van der Waals set n = 6 to obtain finally
(
p + av−2

)(
v − b

)
= kT (335)

van der Waals’ equation of state (335) is actually an (a, b)-parameterized
class of equations into which a and b enter as dimensioned constants

[p ] = pressure · volume : [b ] = volume

and that refer to a similarly parameterized population of “van der Waals gases.”

218 See Appendix 5 (especially §1) in ter Haar202 for helpful discussion.
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Division by b gives
(
p + (a/b2)V−2)(V − 1

)
= (k/b)T (336)

where
V ≡ v/b = volume per molecule

volume of molecule
provides a “dimensionless volume variable.”219 Subsequent division by a/b2

gives
(P + V−2)(V − 1) = T (337)

where
P ≡ (b2/a)p and T ≡ (bk/a)T

provide dimensionless measures of pressure and temperature. The theory of
ideal gases is so primitive that it does not permit the introduction of
dimensionless variables. Their occurance is, on the other hand, a characteristic
feature of van der Waals’ theory, in which they provide an important resource.
Immediately one has a

rule of corresponding states : Let
{
p ′, v ′, T ′} refer to a

state of a van der Waals gas Ga′,b ′ and let
{
p ′′, v ′′, T ′′} refer

to a state of Ga′′,b ′′ . The states in question “correspond”
{
p ′, v ′, T ′}←→

{
p ′′, v ′′, T ′′}

if and only if they give rise to identical
{
P, V, T

}
-values.

that acquires physical importance the moment one has established the true
relevance of van der Waals’ theory to the physics of diverse real gases. And
(337) permits one to describe the analytic properties of all van der Waals gases
at the same time. For graphical purposes, however, it proves more useful (more
vividly informative) to work from (336), which I will notate

(
p + αV−2)(V − 1

)
= θ (338)

and it is therefore upon (338) that I base my analytical remarks.

Immediately
p = θ

V − 1
− α 1

V2 (339)

which is the equation of the θ- isotherm . At high temperatures and low density
(V 1 1) this gives back

↓
= θ

V

the isotherms of an ideal gas: it is only at low temperatures and high density
that van der Waals gases display their most distinctive features, and those (see

219 Only the values V > 1 will be considered to be physical, since V < 1 would
make the box smaller than the net volume of the molecules it contains!
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the figure) can be attributed to the circumstance that (339)—rewritten

p(V, θ; α) = θV2 − α(V − 1)
V2(V − 1)

(340)

or again
pV3 − (p + θ)V2 + α(V − 1) = 0

—is cubic in V. From (340) it is obvious that
• p ↑ ∞ as V ↓ 1 with θ > 0 held constant
• p ↓ 0 as (again isothermally) V ↑ ∞

and that p vanishes also at a pair of points

V = α ±
√

α2 − 4θα
2θ

that are
real

coindicent
imaginary





according as






θ < 1
4α

θ = 1
4α

θ > 1
4α

(341)

The figure inspires interest also in the local extrema of the isothermal
curves. To locate those we compute

( ∂p
∂V

)

θ
= 2α(V − 1)2 − θV3

V3(V − 1)2

and confront once again a cubic. To circumvent that awkwardness we use (338)
to eliminate θ from the numerator and obtain

p(V; α) = αV − 2
V3 (342)

as a description of the curve that passes through all the extrema—what I will
call the equation of the extremal locus. One looks now (see Figure 87) to the
solutions of

p(V; α) = p(V, θ; α)

to discover the points—call them V1, V2 and V3 = ∞—at which the given
isotherm is (respectively) locally minimal, locally maximal, or asymptotically
minimal. From

∂
∂V

p(V; α) = 2αV − 3
V4

we see that the extremal locus is itself maximal at V = 3. Where, according
to (342), p = 1

27α. The isotherm through that point, according to (338), has
θ = 2α

(
1
27 + 1

9

)
= 8

27α. For that particular isotherm the extremal points V1

and V2 have coalesced at an inflection point , and isotherms with θ > 8
27α have

no local minima/maxima.
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The upshot: latent in the design of var der Waals’ equation of state (335)
is a distinguished critical point—located (in dimensionless coordinates) at

Pc = 1
27 , Vc = 3, Tc = 8

27 ,

—the existence of which is at the same time
• a symptom of the literal failure of (335) and
• a key to the success of van der Waals’ theory, taken as a whole.

Looking first to the “failure:”

From (342) we have p = 0


